2868

A Cell Based Phenotypic Assay Platform For Cancer Metastasis **Drug Discovery And Diagnostics**

Introduction

- 1) Ninety percentage of cancer deaths are from metastasis, but there are very few approved treatments targeting the metastatic process¹
- 2) Multiple late-stage failures in the clinic have led to de-prioritization of metastasis²
- 3) Drug discovery challenges plaguing metastasis are:
 - a) Absence of translational assay platforms that successfully replicates metastasis biology on the bench
 - b) Complete characterization of the specific moving cell population vis-à-vis metastasis biology is challenging
 - c) Spontaneous animal models take a long time and are expensive
- 4) Colorectal cancer is 3rd most prevalent cancer globally (ten percent of all cancers) and is the fourth most common cause of death from cancer, estimated to be responsible for almost 700,000 cancer deaths³.
- 5) The five-year survival rate is ninety percent for colorectal cancers diagnosed at an early stage compared with thirteen percent for those diagnosed at a late stage.

Methods

- 1) Break complex metastatic biology into measurable cell-based simple. phenotypic assays (Fig. 1 & Table 1)
- growing and between moving tumor cells with respect to their ratio (PR; the ratio of plasticity mesenchymal to epithelial markers)
- 3) Genetically engineer cells with high PR (Fig. 2 & 3)
- 4) Characterize the differential response of growing (cells with low PR) and moving cells (same cells but engineered, with high PR) on each of the cellular assays

Translational characterization of patient tumor samples & Identification of rate-limiting steps in metastasis

GROUPS	SL. NO.	MEASURED PARAMETER (one marker / cellular assay per row, unless otherwise mentioned)
CHARACTERIZATION CHARACTERIZATION	1	Plasticity Ratio (PR; 2 markers)
	2	Eptihelial to mesenchymal transition (EMT)
	3	Stemness (2 markers)
	4	Doubling time
MOVEMENT EPITHELIAL	5	Adhesion
	6	Migration
	7	Invasion
MOVEMENT PLOOD PL	8	Transendothelial Migration
	9	Intravasation
	10	Surviving in blood
	11	Extravasation
RVIVALIN2 ISSUE	12	Mesenchymal to eptihelial transition (MET)
	13	Chemoresistance
	14	Survival Response (5 cellular assays)
	15	Cross Talking Ability (2 cellular assays)
SUL	16	Immune Modulation (2 markers)

Arnab Roy Chowdhury, Debabani Roy Chowdhury, Samrat Roy, Manoj Pandre, Sundarajan Kannan, John W. Ellingboe, Mestastop Solutions Pvt. Ltd., Bangalore, India

Results

Confirmation of engineered clones (post limiting dilution):

- Analysis of plasticity ratio (PR) (Fig. 3A)
- Expression analysis of pro-metastatic transcription factor Snail (Fig. 3B)
- Functional assay characterization (Fig. 3C)
- PR explains functional properties in various assays (Fig. 4) but NOT in ALL

HT 29 /C #8C5

Petal Chart Analysis (log scale)

HT 29 (WT AND METASTATIC, #8C5)

Figure 5 (non metastatic HT 29 normalized to base value of 100)

COLO205

Metastatic & pre-metastatic cells have minimum

HT29 Colo205 HCT116 SW480

Summary

- \checkmark Mestastop has successfully created an in vitro phenotypic assay platform that summatively represent metastatic biology
- ✓ Characterization of wild type and proprietary engineered cells have identified PR as a critical determinant of metastasis and other functional properties of a tumor cell population

Way Forward

- ✓ Standardize proprietary in vivo model and generate PoC with identified approved drugs
- \checkmark Assess 80 100 patient samples and identify the key rate-limiting steps for metastasis
- \checkmark Drug discovery efforts around those steps

References

1. Nature Reviews Clinical Oncology, 2019, 16, 185-204 2. European Journal of cancer, 2010, 46, 1177-80 3. https://www.wcrf.org/dietandcancer/cancer-trends/worldwide-cancer-data

Disclaimer

All patient studies are performed after approval of Ethics Committee and Institutional Review board of participating hospitals

Contact us:

Exosome Secretion

ŝ https://mestastop.com/

Please Refer to Poster # 2841 for further insights