2841

Dissecting tumorigenesis and metastatic properties of cell lines by phenotypic functional assays and plasticity ratio (PR)

Samrat Roy, Debabani Roy Chowdhury, Manoj Pandre, Sundarajan Kannan, Rajesh Kumar RK, Amit Sharma, John W. Ellingboe, Arnab Roy Chowdhury Mestastop Solutions Pvt. Ltd., Bangalore, India

Introduction

- Our first poster (#2868) describes the creation of an in vitro platform of phenotypic assays that summatively represent metastatic biology and identifies Plasticity Ratio (PR; ratio of mesenchymal to epithelial markers) as a critical determinant of metastasis and other functional properties of a tumor cell population.
- 2. The relevance of epithelial to mesenchymal transition (EMT) and mesenchymal to epithelial transition (MET) have long been of interest and debate¹, but with the emerging concept of hybrid² or partial EMT³ it is clear that the E-M axis determines and defines functional properties that might drive metastasis.
- 3. Therefore, one key strategy to target cancer metastasis would be to fix cells on this E-M axis⁴, targeting plasticity and dormancy⁵.
- 4. We hereby show that the plasticity ratio can summatively represent cells in the E-M axis and help differentiate between tumorigenic, metastatic, or dormancy properties.

Method

- 1. Metastatic biology was broken down into sixteen cell-based phenotypic assays. (AACR@2021, #2868)
- 2. Cells with high PR (greater number of mesenchymal to epithelial markers) were engineered and compared with the non-engineered wild-type cells with low PR (greater number of epithelial to mesenchymal markers) to create baseline data (Table 1). (AACR@2021, #2868)
- Complex assay systems were created, to understand differential invasion (A), intravasation (B), chemoresistance (C), and secondary cross talk (D) a few examples of which are represented in Figure 1.

Results

				Table 1				
Name	HT29	HCT # 10GB7	HT #12BC6	HT #8C5	Colo 205	HCT 116	SW 480	SW #1C3
Engineered	No	Yes	Yes	Yes	No	No	No	Yes
Increasing PR								

Blood & endothelial cell based intravasation (SW #1C3)

PR shows significant correlation with the metastasis marker, Snail.

Reactive Oxygen Species (Luminiscence)

Glutamate (Luminiscence)

mp4 video presentation link: https://drive.google.com/file/d/159_crX4lzmmrgUIKOCiMh09x473yEGgi/view?usn=shari

Autophagy (MFI)

In Vivo PoC: Tumorigenesis depends on PR

Summary

- ✓ Plasticity Ratio (PR) can successfully differentiate between multiple steps in the metastatic cycle, including tumorigenesis, invasiveness, dormancy, and surviving ability in the secondary tissue.
- ✓ Initial proof-of-concept in vivo experimentation also suggests that high tumorigenesis need not translate into successful metastasis.

Way Forward

- \checkmark Normalize PR data with patient sample analysis to facilitate translational studies.
- \checkmark Identify key targets in relevant steps of metastasis for targeted discovery leveraging the proprietary platform METSCAN^{TM.}

References

- 1. Trends in Cell Biology, 2020, 30, 764-776
- 2. Nature, 2018, 556, 463-468
- 3. Cell, 2016, 166, 21-45
- 4. Nat Rev Cancer, 2019, 12, 716-732
- 5. Nat Med, 2021, 27, 34-44.

Contact us:

- +91-9177884450
- arnab@mestastop.com
- ŝ https://mestastop.com/

 \bowtie